\(y\ge0\)
\(y^2=x^2-2x+2\)
\(\Leftrightarrow y^2=\left(x-1\right)^2+1\)
\(\Leftrightarrow y^2-\left(x-1\right)^2=1\)
\(\Leftrightarrow\left(y-x+1\right)\left(y+x-1\right)=1\)
Pt ước số, bạn tự lập bảng
\(y\ge0\)
\(y^2=x^2-2x+2\)
\(\Leftrightarrow y^2=\left(x-1\right)^2+1\)
\(\Leftrightarrow y^2-\left(x-1\right)^2=1\)
\(\Leftrightarrow\left(y-x+1\right)\left(y+x-1\right)=1\)
Pt ước số, bạn tự lập bảng
a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các số nguyên dương x và y thỏa mãn: \(\dfrac{2x+2y}{xy+2}\) có giá trị là 1 số nguyên
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
Tìm các số nguyên x, y thỏa mãn \(x^4+x^2-y^2-y+20=0\)
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)