a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
tìm các số nguyên x,y thỏa mãn: \(y=\sqrt{x^2-2x+2}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: \(x^5+y^2=xy^2+1\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Cho x, y là các số thực dương thỏa mãn: \(x^3+y^3-6.\left(x^2+y^2\right)+13.\left(x+y\right)-20=0\). Tính giá trị của: \(A=x^3+y^3+12xy\)
là số nguyên tố
tìm các số nguyên x,y thỏa mãn 2x3 -2y3 +5xy+1=0