a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
Cho A=1/(b2+c2-a2)+1/(c2+a2-b2)+1/(a2+b2-c2) rút gọn A biết a+b+c=0
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8
cho a,b,c là số nguyên
ab+bc+ac=1
CMR: (a2+1)(b2+1)(c2+1) là một số chính phương
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3
a) Cho a, b, c thoả mãn a+b+c = abc
CMR: a(b2-1)( c2-1) + b(a2-1)( c2-1) + c(a2-1)( b2-1) = 4abc
Cho a, b, c là các số ≠ 0
a+b+c=1 ; a2+b2+c2=1 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Tính xy +yz + zx
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2