Gọi d =(2n+3;4n+8) =(A;B)
ta có B -2A = 4n+8 - 4n -6 =2 chia hết cho d
=> d =2 ; nhưng 2n+3 không chia hết cho 2
=>d =1
=> BCNN(A;B) = A.B / UCLN(A;B) =(2n+3)(4n+8):1 =(2n+3)(4n+8)
Vậy BCNN (2n+3;4n+8) =(2n+3)(4n+8)
Gọi d =(2n+3;4n+8) =(A;B)
ta có B -2A = 4n+8 - 4n -6 =2 chia hết cho d
=> d =2 ; nhưng 2n+3 không chia hết cho 2
=>d =1
=> BCNN(A;B) = A.B / UCLN(A;B) =(2n+3)(4n+8):1 =(2n+3)(4n+8)
Vậy BCNN (2n+3;4n+8) =(2n+3)(4n+8)
Tìm n \(\varepsilon\)N để 4n +9 \(⋮\)2n+3
tìm bội chung nhỏ nhất của 2n+3 và 4n+8 với n thuộc N
cho p/s A=\(\frac{4n+1}{2n+3}\)
a)tìm n \(\varepsilon\)\(ℤ\)để A nhận giá trị nguyên
b)tìm n \(\varepsilon\)để A là p/s tối giản
tìm 1 số tự nhiên N để cả 2 số 6 là bội của [ 2N - 3 ] và [4N + 8 ] và là bội của [ 2N - 1 ]
Tìm stn n để các số sau nguyên tố cùng nhau
a, 4n + 3 và 2n + 3
b, 7n + 13 và 2n + 4
c, 2n + 3 và 4n + 8
d, 9n + 24 và 3n + 4
e, 18n + 3 và 21n + 7
tìm số tự nhiên n để các cặp số sau là 2 số
3n + 2 và 5n -1
n + 10 và 2n - 8
2n + 3 và 4n +8
2n + 3 và 6n + 4
Bài 1 tìm a,b thuộc số tự nhiên , biết :
ab = 32, BCNN(a,b) = 16
Bài 2 tìm ƯCLN(2n + 3, 4n + 3) với n thuộc số tự nhiên
1) Tìm số nguyên a,b biết: a^3+b^3=1216 và phân số a/b rút gọn được thành 3/5
2) Viết các phân số tối giản a/b với a,b là các số nguyên dương với a*b=100
3) Tìm các số tự nhiên a,b biết rằng a/b=132/143 và BCNN a,b=1092
4) Chứng tỏ các phhaan số sau đều là tối giản:
a) 2n+1/4n+8 ( n khác -2) ; b) 3n+2/5n+3 ( mọi n thuộc số nguyên ) ; c) n+1/2n
Tìm các ước chung của 4n 3 và 2n,n thuộc N