Ta nhận thấy
Tthừa số thứ nhất ở mẫu của phân số liền sau = thừa số thứ nhất của phân số liền trước + 4
Thừa số thứ hai ở mẫu của phân số liền sau = thừa số thứ hai của phân số liền trước + 2
\(\Rightarrow B=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
\(B=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(4B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(4B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{101-99}{99.101}\)
\(4B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(B=\frac{100}{101.4}=\frac{25}{101}\)