Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Trả lời
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Với x=2; y=5 thì 2^5 + 1 =33 đâu phải số nguyên tố....
xy+1=zxy+1=z, ⇒z>2⇒z>2 ⇒z⇒z lẻ ⇒xy+1⇒xy+1 lẻ ⇒x⇒x chẵn ⇒x=2⇒x=2
Với y=2y=2: ⇒z=5⇒z=5 (thỏa mãn)
Với y>2y>2: 2y+1⋮2+1⇔z⋮32y+1⋮2+1⇔z⋮3 vì zz là số nguyên tố lớn hơn 33 mà z⋮3z⋮3 nên trường hợp này không tồn tại x,y,zx,y,z thỏa mãn đề bài (2y+1⋮2+12y+1⋮2+1 vì yy lẻ)
Vậy (x,y,z)(x,y,z)=(2,2,5)
khó quá bạn ạ
chúc bạn học tốt