Ta có: b - 3 \(\in\)Ư(8b - 14)
<=> 8b - 14 \(⋮\)b - 3
<=> 8(b - 3) + 10 \(⋮\)b - 3
<=> 10 \(⋮\)b - 3
<=> b - 3 \(\in\)Ư(10) = {1; 2; 5; 10; -1; -2; -5; -10}
Lập bảng :
b - 3 | 1 | 2 | 5 | 10 | -1 | -2 | -5 | -10 |
b | 4 | 5 | 8 | 13 | 2 | 1 | -2 | -7 |
Vậy ....
Giải
b - 3 là ước số của 8b - 14.
\(\Rightarrow\left(8b-14\right)⋮\left(b-3\right)\)
\(\Rightarrow\left(8b-24+10\right)⋮\left(b-3\right)\)
\(\Rightarrow\left[8\left(b-3\right)+10\right]⋮\left(b-3\right)\)
Vì \(\left[8\left(b-3\right)\right]⋮\left(b-3\right)\) nên \(10⋮\left(b-3\right)\)
\(\Leftrightarrow b-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau :
\(b-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(b\) | \(4\) | \(2\) | \(5\) | \(-1\) | \(8\) | \(-2\) | \(13\) | \(-7\) |
Vậy \(b\in\left\{4;2;5;-1;8;-2;13;-7\right\}\)
Câu hỏi của Nguyễn Công Minh Hoàng - Toán lớp 8 - Học toán với OnlineMath