cho f(x)=ax^3+bx^2+cx+d với a b c d là các số hữu tỉ biết 7a +5b +c + 2d = 0 cm F(-1).F(2) \(\le\) 0
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Câu 1:Cho đa thức: Q=3x-0,5x^6-4x^5-x^3+ax^6+bx^5+6x^4+c-5
Tìm a, b, c biết Q(x) có bậc là 5,hệ số cao nhất là 3 và hệ số tự do là -2
Câu 2: Cho đa thức f(x) =ax^2+bx+c. Tìm a,b, c biết:
a) f(0)=2, f(1)=0 và f(-1)=6
b) Tính f(3)-2f(2) biết: f(1)=7, b và c là 2 số đối nhau.
Cần gấppppppp nheeeeee!!!!!! :3
Cho f(x) = ax^3+4x(x^2-1)+8(a là hằng số)
g(x)=x^3-4x(bx+1)+c-3(b,c là hằng số)
tìm a; b; c sao cho f(x)=g(x)
P(x)=ax^3+bx^2+cx+d biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức P(x)
cho đa thức f(x)=ax^2+bx+c sao cho f(1);f(4);f(9) là các số hữu tỉ. Chứng minh khi đó a,b,c là các số hữu tỉ
cho da thuc f(x)=ax^2+bx+c voi a,b,c la cac so thuc . Biet rang f(0), f(1), f(2) co gia tri nguyen . cmr : 2a, 2b cung co gt nguyen
chof(x)=ax^2+bx+cvoi a b c là các số hữu tỉ thỏa mãn 13a+b+2c=0 cmr f(-2)xf(3),nho hon bang 0
cho đa thức P(x)=ax^3+bx^2+cx+d thỏa mãn P(0)=1 và P(x+1) - P(x)=x^2 với mọi số thực x, tìm a,b,c d
Cho đa thức f(x) = x^2 + ax + b có nghiệm là 1 - căn 2.Tìm các số a,b (a, b là số hữu tỉ)