\(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}\Rightarrow\frac{2a}{6}=\frac{3b}{24}=\frac{c}{5}=\frac{2a+3b-c}{6+24-5}=\frac{50}{25}=2\)
=> a/3 = 2 => a = 6
=> b/8 = 2 => b = 16
=> c/5 = 2 => c = 10
Đặt \(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}=k\Rightarrow a=3k;b=8k;c=5k\)
=> \(2a+3b-c=6k+24k-5k=50\)
=> \(25k=50\Rightarrow k=2\)
=> \(\hept{\begin{cases}a=3\cdot2=6\\b=8\cdot2=16\\c=5\cdot2=10\end{cases}}\)
Ta có : \(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}=\frac{2a}{6}=\frac{3b}{24}=\frac{2a+3b-c}{6+24-5}=\frac{50}{25}=2\)
Nên : \(\frac{a}{3}=2\Rightarrow a=6\)
\(\frac{b}{8}=2\Rightarrow b=16\)
\(\frac{c}{5}=2\Rightarrow x=10\)
Vậy ..........................
Theo bài ra ta có :
\(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}\)=> \(\frac{2a}{6}=\frac{3b}{24}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a}{6}=\frac{3b}{24}=\frac{c}{5}=\frac{2a+3b-c}{6+24-5}=\frac{50}{25}=2\)
=> \(\frac{a}{3}=2\)=> \(a=2.3=6\)
=> \(\frac{b}{8}=2\)=> \(b=2.8=16\)
=> \(\frac{c}{5}=2\)=> \(c=5.2=10\)
Vậy \(a=6\); \(b=24\); \(c=10\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}=\frac{2a+3b-c}{6+24-5}=\frac{50}{25}=2\) \(2\)
\(\frac{a}{3}=2\Rightarrow a=6\)
\(\frac{b}{8}=2\Rightarrow b=16\)
\(\frac{c}{5}=2\Rightarrow c=10\)