ĐK : \(\hept{\begin{cases}\left|a-3\right|\ge0\\\left|5-b\right|\ge0\end{cases}}\Rightarrow\left|a-3\right|+\left|5-b\right|\ge0\)
Mà \(\left|a-3\right|+\left|5-b\right|\le0\) nên |a-3|+|5-b|=0
\(\Leftrightarrow\hept{\begin{cases}a-3=0\\5-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=5\end{cases}}\)
Vậy a=3 ; b=5
Có: \(\hept{\begin{cases}\left|a-3\right|\ge0\forall a\\\left|5-b\right|\ge0\forall b\end{cases}\Rightarrow\left|a-3\right|+\left|5-b\right|\ge0\forall a;b}\)
Mà: \(\left|a-3\right|+\left|5-b\right|\le0\\
\Rightarrow\left|a-3\right|+\left|5-b\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|a-3\right|=0\\\left|5-b\right|=0\end{cases}\Rightarrow\hept{\begin{cases}a-3=0\\5-b=0\end{cases}\Rightarrow}\hept{\begin{cases}a=3\\b=5\end{cases}}}\)