Tính
A=\(\left(1-\frac{1}{21}\right)\cdot\left(1-\frac{1}{28}\right)\cdot\left(1-\frac{1}{36}\right)\cdot....\cdot\left(1-\frac{1}{1326}\right)\)
B=\(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot....\cdot\left(1+\frac{1}{99\cdot101}\right)\)
Chứng minh rằng:
a)\(\frac{1\cdot3\cdot5\cdot\cdot\cdot39}{21\cdot22\cdot23\cdot\cdot\cdot40}=\frac{1}{2^{20}}\)
b)\(\frac{1\cdot3\cdot5\cdot\cdot\cdot\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\cdot\cdot\cdot2n}=\frac{1}{2^n}\)Với \(n\inℕ^∗\)
Tìm x biết:
\(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\frac{1}{2014\cdot2016}\right)\)=\(\frac{x}{1008}\)
Chứng minh rằng
\(\frac{1\cdot3\cdot5\cdot\cdot\cdot\left(2n-1\right)}{\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)\cdot...\cdot2n}=\frac{1}{2^n}\)
Tính nhanh :
\(A=\left(1-\frac{2}{6\cdot7}\right)\left(1-\frac{2}{7\cdot8}\right)\left(1-\frac{2}{8\cdot9}\right)\cdot\cdot\cdot\left(1-\frac{2}{51\cdot52}\right)\)
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot\cdot\cdot\left(1+\frac{1}{99\cdot101}\right)\)
G=\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\cdot\frac{50^2}{49.51}\)
H=\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot\left(1-\frac{3}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{10}{7}\right)\)
Giúp mình vs
Chứng minh rằng :
\(\frac{1\cdot3\cdot5\cdot...\cdot\left(2n-1\right)}{\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)\cdot...\cdot2n}=\frac{1}{2^n}\)
\(D=\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99.100}\right)\)
Tính tổng :
a) \(\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+\frac{1}{7\cdot9\cdot11}+...+\frac{1}{2013\cdot2015\cdot2017}\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{2017^2}\right)\)
c) \(\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot...\cdot\left(1-\frac{1}{1+2+3+...+2017}\right)\)