Tính giá trị của A=2x+3y+z biết (x-1)2 +(y-3)4+z6=0
Tìm A = 2x+3y+z biết: (x-1)2 + (y-3)4 + z6 = 0
P = \(\frac{3x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}.\)
a, Ruts gon
b , Tinh P biet x=-1/2
c, tim x de P < 0
d Tim x e Z de P e Z
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{2x^2}{1+x^2}=y\\\frac{3y^3}{1+y^2+y^4}=z\\\frac{4z^4}{1+z^2+z^4+z^6}=x\end{cases}}\)
1,Cho x,y>0 và xy=2018. Tìm Pmin= 2/x + 1009/y - 2018/(2018x+4y)
2,Cho x,y>0 và x+y=1. Tìm Min B=1/x3+y3 +1/xy
3,Nếu x,y thuộc N* và 2x+3y=53. Tìm max của căn(xy+4)
4,Tìm min P=x^2 +xy +y^2 -3x -3y +2019
5,Cho 0<x<2. Tìm min A= 9x/2-x +2/x
6,Tìm min D= x/y+z + y+z/x + y/x+z + z+x/y + z/x+y + x+y/z
Làm ơn giải giùm mình với, ngay mai kiểm tra rồi.
Cảm ơn nhiều :)))))
1. Tim x,y,z biet: \(\frac{1}{2}\left(x+y+z\right)-3=\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-4}\)
2. Chox,y,z > 0 thoa man \(x+y+z+\sqrt{xyz}=4\) . Tinh \(A=\sqrt{x\left(4-y\right)\left(4-z\right)+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}}\)
tim x,y,z biet : x+y+z+4=2\(\sqrt{x-2}\)+4\(\sqrt{y-3}\)+6\(\sqrt{z-5}\)
cho x+y+z=6;x,y,z>0.Min\(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\)
\(\hept{\begin{cases}x+y+z=0\\2x+3y+z=0\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^2\end{cases}}\)