cho biểu thức \(P=\frac{a^6-2a^5+a-2}{a^5+1}...\)
a Rút gọn P
b tính giá trị của P biết \(\frac{a}{x+y}=\frac{5}{x+z}\)và \(\frac{25}{\left(x+z\right)^2}=\frac{16}{\left(z-y\right)\left(2x+y+z\right)}...\)
Cho biểu thức: P=\(\frac{a^6-2a^5+a-2}{a^5+1}\)
a) Rút gọn biểu thức P
b) Tính giá trị biểu thức P biết rằng \(\frac{a}{x+y}=\frac{5}{x+z}\)và \(\frac{25}{\left(x+z\right)^2}=\frac{16}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính:a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
b) Cho \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) . Tính \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Giải giúp mình với
CMR \(\frac{y-z}{\left(x-y\right).\left(x-z\right)}+\frac{z-x}{\left(y-z\right).\left(y-x\right)}+\frac{x-y}{\left(z-x\right).\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)Cho a,b,c,x,y,z \(\ne\)0 và \(a+b+c=x+y+z=\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\)CMR \(a^2x+b^2y+c^2z=0\)Thanks nhiều ạ
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
cho biểu thức \(P=\frac{a^6-2a^5+a-2}{a^5+1}...\)
a Rút gọn P
b tính giá trị của P biết \(\frac{a}{x+y}=\frac{5}{x+z}\)và \(\frac{25}{\left(x+z\right)^2}=\frac{16}{\left(z-y\right)\left(2x+y+z\right)}...\)
mình cần gấp ai giúp tui cho 4 tick nhanh tay săn ngay
cho x;y;z thỏa mãn x+y+z=3.Tìm Min của biểu thức:
\(A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\)
103,CM:\(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{zx}+\frac{z\left(y-x\right)}{xy}}=x+y+z\)