\(A=x^4-7x^3+10x^2+\left(a-1\right)x+b-a\)
\(A=x^4-6x^3+5x^2-x^3+6x^2-5x-x^2+\left(a-1\right)x+b-a\)
\(A=x^2\left(x^2-6x+5\right)-x\left(x^2-6x+5\right)-\left(x^2-\left(a-1\right)x+b-a\right)\)
Ta thấy
\(x^2\left(x^2-6x+5\right)-x\left(x^2-6x+5\right)\) chia hết cho B
\(\Rightarrow-\left(x^2-\left(a-1\right)x+b-a\right)\) phải chia hết cho B
\(\Leftrightarrow\left[{}\begin{matrix}a-1=6\\b-a=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=5\\b=0\end{matrix}\right.\)