\(\frac{x^3+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)-x^2+2x+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)-\left(x^2+x-2\right)+3x-2+ax+b}{\left(x^2+x-2\right)}\)
\(=\frac{x\left(x^2+x-2\right)-\left(x^2+x-2\right)+\left(3+a\right)x+\left(b-2\right)}{\left(x^2+x-2\right)}\)\(\hept{\begin{cases}b=2\\a=-3\end{cases}}\)
Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath
Tham khảo