Nhân cả 2 vế với 4, ta có:
8a2+4b2+4c2+4d2+4e2=4a(b+c+d+e)
<=> 8a2+4b2+4c2+4d2+4e2 - 4a(b+c+d+e) = 0
<=> 8a2+4b2+4c2+4d2+4e2 - 4ab-4ac-4ad-4ae=0
<=>(a2-4ab+4b2) + (a2-4ac+4c2) + (a2-4ad+ 4d2) + (a2-4ae+ 4e2) +4a2=0
<=> (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 + (2a)2 = 0
Vì (a-2b)2, (a-2c)2, (a-2d)2, (a-2e)2 , (2a)2 luôn lớn hơn hoặc bằng không
=> (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 + (2a)2 >= 0
mà (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 + (2a)2 = 0
nên
(2a)2 = 0 <=> a=0
(a-2b)2 = 0 <=> (0-2b)2=0 <=> 2b=0 <=> b=0
Chứng minh tương tự ta được a=b=c=d=e=0
Vậy a=b=c=d=e=0
Áp dụng BĐT \(4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4ab+4ac+4ad+4ae\)
\(\Rightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\)\(\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)
\(\Rightarrow\left(a-2b\right)^2+\left(a-2c^2\right)+\left(a-2d^2\right)+\left(a-2e\right)^2\ge0\)( Luôn đúng với mọi trường hợp )
Dấu "=" xảy ra \(\Leftrightarrow a=2b=2c=2d=2e\)
P/s không hiểu thì: \(2xy\le x^2+y^2\forall x=2a;y=b+c+d+e\)
Có thể dùng BĐT Bunhiaxicop cho 4 số