Vì \(\hept{\begin{cases}\left(x+2y-4\right)^2\ge0\\\left(2x-3y-1\right)^2\ge0\end{cases}}\)=> \(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)
\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2=0\) <=> \(\left(x+2y-4\right)^2=\left(2x-3y-1\right)^2=0\)
<=>\(x+2y-4=2x-3y-1=0\)
\(x+2y-4=0\Leftrightarrow x+2y=4\Leftrightarrow2\left(x+2y\right)=8\Leftrightarrow2x+4y=8\)
\(2x-3y-1=0\Leftrightarrow2x-3y=1\)
=>\(\left(2x-3y\right)-\left(2x+4y\right)=1-8\)
=>\(2x-3y-2x-4y=-7\)
=>\(-7y=-7\)=>\(y=1\)=>\(x=2\)
Vậy .............................