Gọi hai số cần tìm là a; b
Vì tổng , hiệu ; tích tỉ lệ nghịch với 35 ; 210 ; 12
nên ta có
\(35\left(a+b\right)=210\left(a-b\right)=12ab\)
<=> \(\frac{35\left(a+b\right)}{420}=\frac{210\left(a-b\right)}{420}=\frac{12ab}{420}\Leftrightarrow\frac{a+b}{12}=\frac{a-b}{2}=\frac{ab}{35}=t\)
=> a + b = 12t ; a - b = 2t ; ab = 35t
a + b + a - b = 12t + 2t => 2a = 14t => a = 7t
=> b = 5t
ab = 35t <=> 5t.7t = 35t
<=> 35t.t = 35t => t = 1
=> a = 5 ; b = 7
Vậy hai số cần tìm là 5 vs 7
Gọi 2 số cần tìm là a,b
Ta có: a+b TLN với 35; a-b TLN với 210; a*b TLN với 12
nên (a+b)*35=(a-b)*210=a*b*12
=>(a+b)*35=(a-b)*210
(a+b)/(a-b)=210/35
(a+b)=6a-6b
6a-a=b+6b
5a=7b => a/b=7/5
=>a=7; b=5
Vậy 2 số cần tìm theo thứ tự là 7 và 5