Chọn A.
Tiếp điểm nằm trên trục hoành nên ![]()
Ta có: 
Vậy phương tình tiếp tuyến có dạng ![]()
![]()
Giao điểm của tiếp điểm vừa tìm với trục tung thỏa mãn hệ 
Chọn A.
Tiếp điểm nằm trên trục hoành nên ![]()
Ta có: 
Vậy phương tình tiếp tuyến có dạng ![]()
![]()
Giao điểm của tiếp điểm vừa tìm với trục tung thỏa mãn hệ 
Cho hàm số y = f(x) = a x + b c x + d ( a,b,c,d ∈ ℝ , - d c ≠ 0) đồ thị hàm số y= f’(x) như hình vẽ.

Biết đồ thị hàm số y= f(x) cắt trục tung tại điểm có tung độ bằng 3. Tìm phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành ?
A. y = x - 3 x + 1
B. y = x + 3 x - 1
C. y = x + 3 x + 1
D. y = x - 3 x - 1
Cho hàm số y= f(x) =ax3+ bx2+cx+d có đạo hàm là hàm số y= f’ (x) với đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y= f( x) tiếp xúc với trục hoành tại điểm có hoành độ dương . Khi đó đồ thị hàm số y= f( x) cắt trục tung tại điểm có tung độ là bao nhiêu?

A. 2/3
B. 1
C. 3/2
D. 4/3
Tiếp tuyến của đồ thị hàm số y = - x + 1 3 x - 2 tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là:
A. -1
B. 1/4
C. -5/4
D. -1/4
Cho hàm số y = x - 1 2 x + 1 có đồ thị là (C). Gọi điểm M(x0; y0) với x0 > -1 là điểm thuộc (C) biết tiếp tuyến của (C) tại điểm M cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A; B và tam giác OAB có trọng tâm G nằm trên đường thẳng d: 4x+y=0. Hỏi giá trị của x0+2y0 bằng bao nhiêu?
A . -7/2
B. 7/2
C. 2
D.1
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Đường thẳng d có phương trình y = a x + b là tiếp tuyến của (C), biết d cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a+b
A. -1
B. -2
C. 0
D. -3
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Đường thẳng (d) có phương trình y = a x + b là tiếp tuyến của (C), biết (d) cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a + b
A. 0
B. -2
C. -1
D. -3
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Giả sử, đường thẳng d: y=kx+m là tiếp tuyến của (C), biết rằng d cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác ∆ O A B cân tại gốc tọa độ O. Tổng k+m có giá trị bằng:
A. 1.
B. 3.
C. -1.
D. -3.
Biết rằng đồ thị (C) của hàm số y = 3 x ln ( 3 )
cắt trục tung tại điểm M và tiếp tuyến của đồ thị (C) tại M
cắt trục hoành tại điểm N . Tọa độ của điểm N là:




Hệ số góc của tiếp tuyến đồ thị hàm số y = x - 1 x + 1 tại giao điểm của đồ thị hàm số với trục tung bằng
A. -2
B. 1
C. 2
D. 1