Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.
Link : http://olm.vn/hoi-dap/question/715065.html
Thấy Online Math chọn thì không nỡ bỏ quên :v
Đề : Chia số \(2013^{2016}\) thành tổng các số tự nhiên.
Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.
Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.
Cách giải :
Đặt \(2013^{2016}=a_1+a_2+...+a_n\)
Tổng lập phương các số tự nhiên này là :
\(a_1^3+a_2^3+...+a_n^3\)
Có :
\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)
\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)
\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)
Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.
Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.
Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)
ồ...Hóa ra đây là: đáp án
Sao bn không làm hết luôn đi
mà lớp 8 đã học đến kiến thức này rồi á???
Sao mà mk thấy sao sao í..
Chj mk hok lp 9 rồi mà có thấy khi nào chj làm những bài như thế này đâu (cho zù chj mk là h/s giỏi toán )
Thực chất đây cũng có thể là bài khó lớp 7, nhưng mình thấy có hằng đẳng thức nên xếp vào lớp 8 :)
Ukm khá là đơn giản bài này mà của lớp 7 á khó vậy cơ mà