( 12 + 22 + 32 +....+ 20122 ). (91 - 91) = (12 + 22 + 32 +....+ 20122) . 0 = 0
[91-273/3]x[12+22+32+...+20122]
=[91-91]x[12+22+32+...+20122]
=0x[12+22+32+...+20122]
=0
( 12 + 22 + 32 +....+ 20122 ). (91 - 91) = (12 + 22 + 32 +....+ 20122) . 0 = 0
[91-273/3]x[12+22+32+...+20122]
=[91-91]x[12+22+32+...+20122]
=0x[12+22+32+...+20122]
=0
Thực hiện phép tính:
(12+22+32+....+20122)(91-273:3)
Thực hiện phép tính:
1, \(\left(\dfrac{-1}{2}\right)^2.\left|+8\right|-\left(-\dfrac{1}{2}\right)^3:\left|-\dfrac{1}{16}\right|\)
2, \(\left|-0,25\right|-\left(-\dfrac{3}{2}\right)^2:\dfrac{1}{4}+\dfrac{3}{4}.2017^0\)
3, \(\left|\dfrac{2}{3}-\dfrac{5}{6}\right|.\left(3,6:2\dfrac{2}{5}\right)^3\)
4, \(\left|\left(-0,5\right)^2+\dfrac{7}{2}\right|.10-\left(\dfrac{29}{30}-\dfrac{7}{15}\right):\left(-\dfrac{2017}{2018}\right)^0\)
5, \(\dfrac{8}{3}+\left(3-\dfrac{1}{2}\right)^2-\left|\dfrac{-7}{3}\right|\)
Thực hiện phép tính:
\(\left(\frac{-1}{2}\right)^3-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)
Thực hiện phép tính:
a) \(\left(\frac{1}{3}-1\right).\left(\frac{1}{6}-1\right).\left(\frac{1}{10}-1\right).\left(\frac{1}{15}-1\right)...\left(\frac{1}{1225}-1\right).\left(\frac{1}{1275}-1\right)\)
b) 1 - 2 + 3 - 4 + 5 - 6 + ... + 2011 - 2012
Thực hiện các phép tính (tính nhanh nhất nếu có thể):
\(A,\)\(2^2.5-\left(1^{10}+8\right):3^2\)
\(B, 5^8:5^6+4.(3^2-1)\)
\(C,\)\(400-\left\{36-20:\left[3^3-\left(8-3\right)\right]\right\}\)
Bài 1: Thực hiện phép tính sau:
1) \(A=\dfrac{-2}{4}+\dfrac{2}{7}-\dfrac{5}{28}\)
2) \(B=\left(\dfrac{5}{7}.0,6-5:3\dfrac{1}{2}\right).\left(40\%-1,4\right).\left(-2\right)^3\)
Thực hiện phép tính:
a) \(A=\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
b) \(B=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
Thực hiện phép tính một cách hợp lí nhất:
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+4+...+20\right)\)
Thực hiện phép tính:
\(\left(1-\frac{2}{2\cdot3}\right)\left(1-\frac{2}{3\cdot4}\right)\left(1-\frac{2}{4\cdot5}\right)...\left(1-\frac{2}{99\cdot100}\right)\)