Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Hải Đăng

Thực hiên phép tính

(1/100x99) - (1/99x98) - (1/98x97) - ..... - (1/3x2) - (1/2x1)

Chú ý: (1/100x99) đọc là 1 phần 100 nhân 99

Ngô Chi Lan
8 tháng 7 2020 lúc 14:37

Bài làm:

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99.100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{99.100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{98-97}{97.98}+\frac{99-98}{98.99}\right)\)

\(=\frac{1}{99.100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{99.100}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{99.100}-\frac{98}{99}\)

\(=\frac{1-98.100}{99.100}=\frac{1-9800}{9900}=-\frac{9799}{9900}\)

Học tốt!!!!

Khách vãng lai đã xóa
FL.Han_
8 tháng 7 2020 lúc 14:40

\(\left(\frac{1}{100.99}\right)-\left(\frac{1}{99.98}\right)-\left(\frac{1}{98.97}\right)-...-\left(\frac{1}{3.2}\right)-\left(\frac{1}{2.1}\right)\)

\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{2.1}\right)\)

\(=\frac{1}{99}-\frac{1}{100}-\left(\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+1+\frac{1}{2}\right)\)

\(=\frac{1}{99}-\frac{1}{100}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\frac{1}{100}-1+\frac{1}{99}\)

\(=\frac{2}{99}-\frac{101}{100}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn thị thu trang
Xem chi tiết
Bibi Sky
Xem chi tiết
Ben Tennyson
Xem chi tiết
Nguyễn Thị Phương Anh
Xem chi tiết
Vũ Thanh Bình
Xem chi tiết
Lang Chanh Th Tan Phuc 1
Xem chi tiết
Tran Hai
Xem chi tiết
Nguyễn Thị Quỳnh Dương
Xem chi tiết
Ngọc Ánh Hồng
Xem chi tiết