Đúng rồi: \(\sqrt{100}-1=9\) khử căn ở mẫu là ra
Đúng rồi: \(\sqrt{100}-1=9\) khử căn ở mẫu là ra
thực hiện phép tính
a )\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{1680}+\sqrt{1681}}\)
b) \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Thực hiện phép tính
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+......+\frac{1}{\sqrt{99}+\sqrt{100}}\)
Thực hiện phép tính
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
giúp mk vs nhak. mk đang cần gấp (thank you ^_^)
Thực hiện các phép tính sau:
a) A = \(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+....-\frac{1}{\sqrt{100}+\sqrt{101}}\)
b) B = \(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
Tính
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
tính
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+........+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Tính tổng S =\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Tính : \(\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{98}}+\frac{1}{\sqrt{100}+\sqrt{99}}\)
Thực hiện phép tính
\(4\sqrt{\frac{2}{9}}+\sqrt{2}+\sqrt{\frac{1}{18}}\)
b) \(\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)