b) Ta có: \(\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)\)
\(=\frac{x^4-\left(x^2-2x+1\right)}{x^2+x-1}\)
\(=\frac{x^4-\left(x-1\right)^2}{x^2+x-1}\)
\(=\frac{\left(x^2-x+1\right)\left(x^2+x-1\right)}{x^2+x-1}\)
\(=x^2-x+1\)
b) Ta có: \(\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)\)
\(=\frac{x^4-\left(x^2-2x+1\right)}{x^2+x-1}\)
\(=\frac{x^4-\left(x-1\right)^2}{x^2+x-1}\)
\(=\frac{\left(x^2-x+1\right)\left(x^2+x-1\right)}{x^2+x-1}\)
\(=x^2-x+1\)
tìm a ; b sao cho :
a, \(\left(2x^3-x^2+ax+b\right)⋮\left(x^2-1\right)\)
b, \(\left(x^4+ax^2+bx-1\right)⋮\left(x^2-1\right)\)
c, \(\left[x^4+x^3 +ax^2+\left(a+b\right)x+2b+1\right]⋮\left(x^3+ax+b\right)\)
Tìm n \(\left(n\in\mathbb{N}\right)\) để mỗi phép chia sau đây là phép chia hết
a) \(\left(x^5-2x^3-x\right):7x^n\)
b) \(\left(5x^5y^5-2x^3y^3-x^2y^2\right):2x^ny^n\)
1. Thực hiện:
a)\(\left(3x^2y^3-5x^2y^2+6x^4y^7-9x^5y^4\right):x^2y^2\)
b) \(\left(6a^3-3a^2\right):a^2+\left(12a^2+9a\right):3a\)
Làm tính chia :
a) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)
b) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
c) \(\left(3x^2y^2+6x^2y^3-12xy\right):3xy\)
Bài 1: Thực hiện phép tính:
a) \(32x^5\left(3y-7\right)^5:[-4x\left(7-3y\right)^4]\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)^4}{\left(x+7\right)^3}\)
Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên) :
a) \(\left(5x^3-7x^2+x\right):3x^n\)
b) \(\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)\)
c) \(\left(x^3y^3-\dfrac{1}{2}x^2y-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
Tìm x, biết:
\(\left(x^2+\dfrac{1}{2}x\right):\dfrac{1}{2}x-\left(2x+1\right)^3:\left(2x+1\right)^2+\left(x+1\right)^5:\left(x+1\right)^2=0\)
Bài 2: Chia các đa thức:
a,\(\left(3x^4-2x^3-2x^2+4x-8\right):\left(x^2-2\right)\)
b,\(\left(2x^3-26x-24\right):\left(x^2+4x+3\right)\)
c,\(\left(x^3-7x+6\right):\left(x+3\right)\)
Giúp mk vs mk cần gấp mai mk học rùi,cảm ơn các bạn nha
Làm tính chia:
a) \(5x^2y^4:10x^2y\)
b)\(\dfrac{3}{4}x^3y^3:\left(-\dfrac{1}{2}x^2y^2\right)\)
c)\(\left(-xy\right)^{10}:\left(-xy\right)^5\)