\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
2*(1/1*3+1/3*5+.......+1/99*100)
=2*(2/1*3+2/3*5+.....+2/99*100)*1/2
=1/3-1/5+1/5-1/7+....+1/99-1/100
=1/3-1/100
=100/300-3/300
=97/300
2(1/1.3+1/3.5+1/5.7+...+1/99.100)
=2/1.3+2/3.5+2/5.7+...+2/99.100
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100
=1-1/100
=99/100