Thu gọn
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2009^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2010^4+\frac{1}{4}\right)}\)
\(B=\frac{\left(a+2008\right)!+\left(a+2009\right)!}{\left(a+2008\right)!-\left(a+2009!\right)}\)
Cho \(n^4+\frac{1}{4}=\left(\left(n-1\right)n+\frac{1}{2}\right)\left(\left(n+1\right)n+\frac{1}{2}\right)\)
Thu gọn phân thức:
\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(13^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(14^4+\frac{1}{4}\right)}\)
Rút gọn
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right).....\left(15^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right).....\left(16^4+\frac{1}{4}\right)}\)
Rút gọn :
\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(51^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(52^4+\frac{1}{4}\right)}\)
Tính : \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)\left(7^4+\frac{1}{4}\right)\left(9^4+\frac{1}{4}\right)\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)\left(8^4+\frac{1}{4}\right)\left(10^4+\frac{1}{4}\right)\left(12^4+\frac{1}{4}\right)}\)
Câu hỏi: Rút gọn biểu thức A = \(\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(\left(2k\right)^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(\left(2k-1\right)^4+\frac{1}{4}\right)}\) (k thuộc N*)
TÍnh giá trị biểu thức
A=\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Tính giá trị biểu thức
A=\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..........\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right).........\left(30^4+\frac{1}{4}\right)}\)
Tính
\(S=\frac{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right).\left(5^4+\frac{1}{4}\right).....\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right).\left(6^4+\frac{1}{4}\right)....\left(20^4+\frac{1}{4}\right)}\)