\(=\left(-1\right)\cdot3^{n-6}\cdot\left(-1\right)\cdot\frac{4a}{3x^{2n-6}}\cdot1\)
\(=3^{n-6}\cdot\frac{4a}{3x^{2n-6}}=\frac{4a}{3^n\cdot x^{2n-6}}\)
\(=\left(-1\right)\cdot3^{n-6}\cdot\left(-1\right)\cdot\frac{4a}{3x^{2n-6}}\cdot1\)
\(=3^{n-6}\cdot\frac{4a}{3x^{2n-6}}=\frac{4a}{3^n\cdot x^{2n-6}}\)
Thu gọn các đa thức sau,chỉ ra phần biến,phần hệ số,bậc của mỗi đơn thức thu được:
a) \(\left(-\dfrac{1}{3}x^2\right)\left(-24xy\right)4xy\)
b) \(\left(xy^2\right)\left(-2xy^3\right)\)
c) \(\dfrac{1}{5}x^2y^3z\left(\dfrac{1}{2}xyz\right)^3\)
d) \(\dfrac{1}{3}abxy\left(axy^2\right)^2\) (a,b là hằng số)
Giúp e vs m.n ơi!!!!
1. tính GTBT:
\(B=\frac{2}{3}x^2y\left(2x^2-\frac{y}{3}\right)-2x^2\left(2x^2-1\right)+\left(2x^2-\frac{y}{3}\right).2x\)
2.tính:
\(P=3x^n\left(4x^{n+1}-1\right)-2x^{n+1}\left(6x^{n-2}-1\right)\)
\(Q=\left(x^{2n}+x^ny^n+y^{2n}\right).x^n.y^n\)
Thu gọn các đơn thức sau rồi tìm hệ số của nó :
a) \(\left(-\dfrac{1}{3}xy\right).\left(3x^2yz^2\right)\)
b) \(-54y^2.bx\) (b là hằng số)
c) \(-2x^2y.\left(-\dfrac{1}{2}\right)^2.x\left(y^2z\right)^3\)
Cho đa thức \(P\left(x\right)=\text{ax}^2+bx+c\) ( a, b, c là hằng số ) thỏa mãn P(1) = P(-1). Chứng minh rằng \(P\left(x\right)=P\left(-x\right),\forall x\in R\)
➤ Bài 1 : Cho đa thức :
\(f\left(x\right)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\).
a/ Tìm bậc của đa thức f(x).
b/ Chứng minh : Đa thức f(x) luôn nhận giá trị nguyên với \(\forall x\)\(\in \mathbb{Z}\)
➤ Bài 2 : Cho 3 số ɑ, b, c thoả mãn :
\(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
Tính \(M=4\left(a-b\right)\left(b-c\right)\left(c-a\right)^2\).
Các bạn nhận xét xem mình làm đúng chưa nhé! Mình có chút phân vân! Có sai chỗ nào thì chỉ bảo mình nha! Cảm ơn các bạn nhiều nha!
Đề bài: Chứng minh rằng đa thức P(x) có ít nhất 2 nghiệm biết: \(x.P\left(x+2\right)-\left(x-3\right).P\left(x-1\right)=0\)
Bài làm:
Với x = 0, ta có: \(0.P\left(0+2\right)-\left(0-3\right).P\left(0-1\right)=0\Rightarrow0+3.P\left(-1\right)=0\Rightarrow P\left(-1\right)=0\)
Với x = 3, ta có: \(3.P\left(3+2\right)-\left(3-3\right).P\left(3-1\right)=0\Rightarrow3.P\left(5\right)-0.P\left(2\right)=0\Rightarrow3.P\left(5\right)=0\Rightarrow P\left(5\right)=0\)
Vậy: Đa thức P(x) có ít nhất 2 nghiệm là x = -1 và x = 5
Cho đa thức \(P\left(x\right)=ax^2+bx+c\). Trong đó \(a,b,c\) là các hằng số thỏa mãn \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a\ne0\). Tính \(\dfrac{P\left(-2\right)-3P\left(1\right)}{a}\).
1.Rút gọn các đơn thức sau và chỉ bra hệ số và phần biến
a)\(-2x^2y.\left(-xy^2\right)\)
b)\(\frac{1}{4}\left(x^2y^3\right)^2.\left(-2xy\right)\)
2.Tính các tích sau rồi tìm bậc của công thức thu được
a)\(\left(-7x^2yz\right).\frac{3}{7}xy^2z^3\)
b)\(-\frac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
c)\(x^2yz.\left(2xy\right)^2z\)
d)\(-\frac{1}{3}x^2y.\left(-x^3yz\right)\)
3.Thực hiện phép nhân các đơn thức sau rồi tìm bậc đơn thức nhận được
a)\(4x^2y.\left(-5xy^4\right)\)
b)\(\frac{-1}{2}x^3y.\left(-xy\right)\)
c)\(\left(-2x^3y\right).3xy^4\)
d)\(\frac{-4}{5}x^3y.\left(-xy\right)\)
e)\(\frac{2}{3}xyz.\left(-6x^2y\right).\left(-xy^2z\right)\)
f)\(\left(-2x^2y\right).\left(\frac{-1}{2}\right)^2.\left(x^2y^3\right)^2\)
1, Cho hai đa thức :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\\ g\left(x\right)=x^3+ax^2+bx^2+2\)
Xác định a và biết nghiệm của đa thức f(x) và nghiệm của của đa thức g(x) bằng nhau.
2, CMR : Đa thức P(x) có ít nhất 2 nghiệm. Biết :
\(\left(x-6\right)\cdot P\left(x\right)=\left(x+1\right)\cdot P\left(x-4\right)\)
3, Cho đơn thức bậc hai \(\left[P\left(x\right)=ax^2+bx+c\right]Biết:P\left(1\right)=P\left(-1\right)\\ CMR:P\left(x\right)=P\left(-3\right)\)
4, CMR: Nếu a + b +c = 0 thì đa thức
\(A\left(x\right)=ax^2+bx+c\) có một trong các ngiệm là 1.