(a2 + ab + b2) . (a2 - ab + b2) - (a4 + b4)
= a4-a3b+a2b2+a3b-a2b2+ab3+a2b2-ab3+b4-a4-b4
= a2b2
(a2 + ab + b2) . (a2 - ab + b2) - (a4 + b4)
= a4-a3b+a2b2+a3b-a2b2+ab3+a2b2-ab3+b4-a4-b4
= a2b2
Cho a2+b2 +c2 -ab-ac-bc=0
Chứng minh a=b=c
Chứng minh rằng : a2+b2+ 1/ a2+1/b2 > hoặc = 4
Bài tập: Cho a,b,x,y là những số khác 0. Biết rằng ( a2 + b2 ).( x2 + y2 ) = ( ax + by )2. Hãy tìm hệ thức giữa bốn số a,b,x,y.
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
H·y viÕt c¸c biÓu thøc díi d¹ng tæng cña ba b×nh phong;
(a + b + c)2 + a2 + b2 + c2
mình ko biết tổng ba bình phong là gì
Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)
b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)
Hãy tính diện tích hình vuông ABCD ( hình bên) theo hai cách để kết luận rằng
( a-b)2 = a2-2ab + b2
giúp mk vs mk cần gấp
b1 : rút gọn r tính
a\(4x^2-28x+49\) khi x = 4
b2 : tìm x bt : \(^{x^2}-x=24\)