\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+....+\frac{100}{2^{101}}\)\(A-\frac{A}{2}=\left(1+\frac{3}{2^3}+....+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+.....+\frac{100}{2^{101}}\right)\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{1}{2^{101}}\)
\(\frac{A}{2}=\left(1-\left(\frac{1}{2}\right)^{101}\right).2-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{99}}-\frac{100}{2^{100}}\)
tính tổng
S=1/2*3 - 2/3*4 +...+ 99/100*101 - 100/101*102
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
Tính và thu gọn: \(\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\((100+ {99 {} \over 2}+{98 {} \over 3}+...+{1 {} \over 100})/({1 {} \over 2}+{1 {} \over 3}+{1 {} \over 4}+...+{1 {} \over 101})-2\)
Thu gọn biểu thức:
√[4√3 +2√(7-4√3)]
Thu gọn biểu thức sau: \(\sqrt{18-4\sqrt{15}-4\sqrt{3}+2\sqrt{5}}-\sqrt{13-4\sqrt{3}}\)
Rút gọn :
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+......+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Thực hiện phép tính và thu gọn biểu thức:
B= \(\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
Thực hiện phép tính:
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)