Dịch: Tìm giá trị nhỏ nhất của \(9x^2-6-6x\)
Ta có: \(9x^2-6-6x=9x^2-6x-6=\left(3x-1\right)^2-7\ge-7\)
Dấu \(''=''\)xảy ra \(\Leftrightarrow\left(3x-1\right)^2=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
Vậy, Giá trị nhỏ nhất của đa thức \(9x^2-6-6x\) là \(-7\Leftrightarrow x=\frac{1}{3}\)
=> The minimum value of 9x2-6-6x is -7