\(\overline{0,abc}=\frac{1}{a+b+c}\)( a , b , c \(\ne\)0 )
Theo đề bài :
\(\overline{0,abc}=\frac{1}{a+b+c}\)
\(\overline{0,a}+\overline{0,0b}+\overline{0,00c}=\frac{1}{a+b+c}\)
Hay : \(\left(\overline{0,a}+\overline{0,0b}+\overline{0,00b}\right)\times\left(a+b+c\right)=1\)
Nhân cả hai vế với 1000 , ta được :
\(\left(\overline{a00}+\overline{b0}+c\right)\times\left(a+b+c\right)=1000\)
\(\overline{abc}\times\left(a+b+c\right)=1000\)
Ta có : \(1000=500\times2\)
\(=250\times4\)
\(=125\times8\)
Thử chọn ta được : \(\overline{abc}=125\)