a, 1 a b + 36 = a b 1
100 + a b + 36 = 10. a b + 1
135 = 9 a b
a b = 135 : 9
a b = 15
Vậy a = 1, b = 5
b, a b c d + a b c + a b + a = 4321
Ta có a b c d = 1000 a + 100 b + 10 c + d
a b c = 100 a + 10 b + c
a b = 10 a + b
=> a b c d + a b c + a b + a = 1111a + 111b + 11c + d
Theo đề ta có 1111a + 111b + 11c + d = 4321 với a,b,c,d ∈ {0,1,2,…,9}, a≠0
+ Nếu a>3 thì VT ≥ 4444 + 111.0 + 11.0 + 0 > VP
+ Nếu a<3 thì VT ≤ 2222 + 111.9 + 11.9 + 9 = 3329 < VP
Vậy a = 3 => VT = 3333 + 111b + 11c + d = 4321
=>111b + 11c + d = 988 (1)
+ Nếu b>8 thì VT(1) ≥ 999 + 11.0 + 0 = 999 > VP(1)
+ Nếu b<8 thì VT(1) ≤ 777 + 11.9 + 9 = 885 < VP(1)
Vậy b = 8 => 888 + 11c + d = 988 => 11c + d = 100 (2)
+ Nếu c<9 thì VT(2) ≤ 88+9 = 97 < VP(2)
Vậy c = 9 => d = 1
Số cần tìm là a b c d = 3891
c, a b a × a a = a a a a
=> a b a = a a a a : a a = a(1111):a(11)
=> a b a = 101
Vậy a = 1, b = 0
d, a b × a b a = a b a b
=> a b a = a b a b : a b = ( a b . 100 + a b ) : a b = ( a b . 101 ) : a b
=> a b a = 101
Vậy a = 1, b = 0