Thực hiện phép trừ sau
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}\)
Tính B=\(\frac{2.1+1}{\left[1.\left(1+1\right)^2\right]}+\frac{2.2+1}{\left[2.\left(2+1\right)^2\right]}+\frac{2.3+1}{\left[3.\left(3+1\right)^2\right]}+...+\frac{2.99+1}{\left[99.\left(99+1\right)^2\right]}\).
tìm số nguyên a sao cho \(a^4+4\)là số nguyên tố
Tính\(\frac{\left(4\cdot7+2\right)\left(6\cdot9+2\right)\left(8\cdot11+2\right)..........\left(100\cdot103+2\right)}{\left(5\cdot8+2\right)\left(7\cdot10+2\right)\left(9\cdot12+2\right)..........\left(99\cdot102+2\right)}\)
1.Giải các phương trình
1) \(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
2) \(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
3) \(\left(\frac{x-1}{99}+x-99\right)+\left(\frac{x-3}{97}+\frac{x-7}{93}\right)+\left(\frac{x-5}{95}+\frac{x-95}{5}\right)=6\)
2. Giải các bất phương trình
1) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1^2\right)\left(x-2\right)>12\)
2) \(\frac{x-214}{86}+\frac{x-132}{84}+\frac{x-54}{82}>6\)
Xin mn hãy giúp mk. Cảm ơn rất nhiều!!!
Tình A=\(\frac{\left(4\cdot7+2\right)\left(6\cdot9+2\right)\left(8\cdot11+2\right)...\left(100\cdot103\right)}{\left(5\cdot8+2\right)\left(7\cdot10+2\right)\left(9\cdot12+2\right)...\left(99\cdot102+2\right)}\)
giải PT: a, (4x-5)2 (2x-3)(x-1)=9
b,\(\frac{5}{x-8}+1=\frac{23}{x^2-5x-24}+\frac{2}{x+3}\)
c,(\(\left(\frac{x-1}{99}+\frac{x-99}{1}\right)+\left(\frac{x-3}{97}+\frac{x+97}{3}\right)+\left(\frac{x-5}{93}+\frac{x-95}{5}\right)=6\)
Tính
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{98^2}-1\right).\left(\frac{1}{99^2}-1\right)\)
Tính
\(\frac{3}{\left(x+2\right)\left(x+3\right)}\)+\(\frac{3}{\left(x+3\right)\left(x+5\right)}\)+ \(\frac{3}{\left(x+5\right)\left(x+7\right)}\)+ ... + \(\frac{3}{\left(x+99\right)\left(x+101\right)}\)
So sánh: M=\(\frac{\left(2^3+1\right)\left(3^3+1\right)...\left(100^3+1\right)}{\left(2^3-1\right)\left(3^3-1\right)...\left(100^3-1\right)}\) với N=\(\frac{3}{2}\)