Tam giác ABC nội tiếp đương tròn O;R . H là trực tâm. AA', BB',CC' là các đường cao. CMR BA.BH=2R.BA'
Cho tam giác ABC nội tiếp trong đường tròn tâm o. AA’, BB’, CC’ là các đường cao của tam giác và H là trực tâm. Đường thẳng B’C’ cắt đường tròn (O) ở M và N(B’ nằm giữa M và C’). Chứng minh rằng;
AM = AN.
Tam giác ABM đồng dạng với tam giác AMC’
\(AM^2=AC'.AB=AH.AA'\)
Cho tam giỏc ABC cú ba góc nhọn, nội tiếp đường tròn tâm O, bán kính R. Kẻ các đường cao AA’, BB’, CC’. Gọi S là diện tớch của tam giỏc ABC và S’ là diện tích của tam giác A’B’C’. 1) Chứng minh rằng AO vuông góc với B’C’
Cho tam giác nhọn ABC, 3 đường cao AA', BB', CC' cắt nhau tại H. C/m: H là tâm đường tròn nội tiếp ΔA'B'C'
cho tam giác ABC có 3 góc nhọn với AB<AC và AA',BB',CC' là các đường cao .vẽ đường tròn (O) đường kính BC .từ A kẻ các tiếp tuyến AM,AN đến đường tròn (O) ( M,N là tiếp điểm ) .gọi H là trực tâm của tam giác ABC , M' là giao điểm thứ 2 của A'N và đường tròn (O) ,K là giao điểm của OH và B'C'.CMR:
a) 3 điểm M,N,H thẳng hàng
b) \(\frac{KB'}{KC'}=\left(\frac{HB'}{HC'}\right)^2\)
đường tròn tâm O ngoại tiếp tam giác nhọn ABC có 2 đường cao BB' và CC' cắt nhau tại H . Gọi D và E lần lượt là giao điểm của BB' và CC' với đừng tròn tâm O
a) Cm BCB'C' nội tiếp đường tròn . XĐ tâm O' của đường tròn này
b) Cm cung AD= cung AE từ đó => OA vuông góc DE
c) AH cắt (O) tại F. Cm H là tâm của đường tròn nội tiếp tam giác DEF
Cho tam giác ABC, đường cao BB' , CC' ,nội tiếp trong đương tròn tâm O. Chứng minh OA vuông góc với B'C'
Các bạn giúp mình với nha !
Cho tam giác ABC nội tiếp đường tròn tâm O và điểm I là tâm đường tròn nội tiếp tam giác.Các điểm A', B', C' lần lượt là các giao điểm của AI,BI,CI với (O). Trên cung nhỏ AC của (O) không chứa điểm B lấy điểm D bất kì. Gọi E là giao điểm của DC' và AA', F là giao điểm củaDA' và CC'.CMR
a) I là trực tâm của tam giác A'B'C'
b) Tứ giác DEIF nội tiếp
c) Tâm đường tròn ngoại tiếp tam giác DEF luôn thuộc 1 đường thẳng cố định
cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O .Kẻ 2 đg kính AA' và BB' của đường tròn
a,Chứng minh ABA'B' là hình chữ nhật
b, Gọi H là trực tâm của tam giác ABC. Chứng minh BH=CA'
c, cho AO=R tìm bán kính đg tròn ngoại tiếp tam giác BHC
vẽ hình cx đc, ko thì thoi