Giải các phương trình.
a) \(\frac{2.\left(1-3x\right)}{5}-\frac{2+3x}{10}=7-\frac{3.\left(2x+1\right)}{4}\)b) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
c) 3x-5=7
d) \(\frac{5}{x+3}=\frac{3}{x-1}\)
e) -2x+14=0
f) 2x.(x-3)+5.(x-3)=0
g) (x2-4)-(x-2).(3-2x)=0
h) 2x3+6x2=x2+3x
giải các pt sau
a)5X(X-2020)+X=2020
b)4(X-5)2-(2X+1)2=0
c)\(\frac{3X}{5}-\frac{2X+1}{3}=2-\frac{X-3}{15}\)
d)5X3+10X2+5X=0
e)2X3-8X=0
f)\(\frac{X^2+5}{25-X^2}=\frac{3}{X+5}+\frac{X}{X-5}\)
g)\(\frac{4}{2X-3}-\frac{4X}{9-4X^2}=\frac{1}{2X+3}\)
h)|2X-4|-15=1
i)20-3|2X+1|=17
k)|4X+2|-1,5=1
GIẢI GIÚP MÌNH NHANH VỚI NHA
giúp mik vs mai mik kiểm tra rùi
a) $\frac{x-1}{x}$ - $\frac{1}{x+1}$ = $\frac{2x-1}{x2+x}$
b) (x+2).(5-3x)=0
c)$\frac{5(1-2x)}{3}$ + $\frac{x}{2}$ = $\frac{3(x-5)}{4}$ - 2
d)$(x+2)^{2}$ - (x-1).(x+3) = (2x-4).(x+4)-3
e)$(2x-3)^{2}$ = (2x-3).(x+1)
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
A=1- (\(\text{ }\frac{\text{2x^2 - 1+x}}{\text{1-x^2}}\text{+}\text{ }\frac{\text{2x^3 - x +x^2}}{\text{1+x^2}}\)) * \(\frac{\text{(((1-x)(x^2-x)}}{\text{2x - 1}}\)
Rút gọn A và Cm A < 4/3
1.a,\(\frac{1}{x+2}+\frac{1}{x^2-2x}=\frac{8}{x^3-4x}\)
b,\(\frac{2x+1}{x^2-1}+\frac{x-1}{x+1}=\frac{2x+5}{1-x}+3\)
c,\(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
d,\(x^2\left(3-2x\right)+x\left(x-1\right)\left(x+1\right)=x\left(2-x^2\right)-4+3x^2\)
e,\(x^2-3x+1=0\)
f,\(\frac{2x+1}{7}+\frac{2x+3}{5}+\frac{2x+5}{3}+\frac{2x+7}{1}=-4\)
g,\(-2x^2-x+6=0\)
2. Hiện nay mẹ 24 tuổi con 3 tuổi. Hỏi bao nhiêu năm nữa mẹ gấp 9 lần tuổi con
CHÚ Ý con nào ko giấu là nhân
Giải phương trình sau:
\(\frac{4}{2x^3+3x^2-8x-12}-\frac{1}{x^2-4}-\frac{4}{2x^2+7x+6}+\frac{1}{2x+3}=0\)
Giải phương trình
2.
a. \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
c. \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{4-2x}{3}}{5}\)
giải phương trình
\(a,\frac{x^2+2x}{x^2+1}-2x=0\) \(d,\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)
\(b,\frac{2x^2+4}{x^2+1}-3=0\) \(e,\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{x^2-9}\)
\(c,\frac{x}{x-1}-\frac{2x}{x^2-1}=0 \) \(g,\frac{1}{2x-3}-\frac{1}{x+3}=\frac{2x+4}{4x^2+9}\)