Cho phương trình (m + 1) 16x - 2( 2m - 3) .4x + 6m + 5 = 0 với m là tham số thực. Tập tất cả các giá trị của m để phương trình có hai nghiệm trái dấu có dạng (a; b). Tính P = a.b
A. 4
B. -4
C. 5
D. -5
Tìm tất cả các giá trị của tham số m để phương trình ( m + 3 ) 16 x + ( 2 m - 1 ) 4 x + m + 1 = 0 có hai nghiệm trái dấu
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Cho phương trình m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0 . Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình đã cho có hai nghiệm thực x1, x2 thỏa 0 < x1 < 1 < x2
A. 2 ; + ∞
B. - 1 ; 2
C. - ∞ ; - 1
D. - ∞ ; - 1 ∪ 2 ; + ∞
Cho hàm số y = ax 3 + bx 2 + cx + d với a ≠ 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
A. .
B. .
C. .
D. .
Cho hàm số y = a x 3 + b x 2 + c x + d với a khác 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
Tìm tất cả các giá trị thực của tham số m để phương trình 9 x - m . 3 x + 2 m - 5 = 0 có hai nghiệm trái dấu
Tất cả giá trị thực của tham số m để phương trình 25 x - 2 . 10 x + m 2 . 4 x = 0 có hai nghiệm trái dấu là:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tập hợp tất cả các giá trị thực của tham số m để phương trình f(x) + m = 0 có hai nghiệm phân biệt là
A. - ∞ ; 2
B. [ 1 ; 2 )
C. (1;2)
D. - 2 ; + ∞