Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tam giác MNP vuông tại M có NP=2 MN qua M kẻ đt d song song vs NP trên nửa mặt phẳng MN có chứa điểm P lấy điểm I thuộc d sao cho MN=IP
a, chứng minh MN//IP. MN=IP
b, lấy điểm E thuộc NP sao cho ME=NE chứng minh E là trung điểm NP
c, gọi F là trung điểm MI , PF cắt MN tại K chứng minh KE vuông góc vs NP
d, chứng minh KI// MP . KI=MP
e, EF cắt KI tại H chứng minh H là trung điểm KI
Cho tam giác MNP có MN<MP . Kẻ phân giác MQ(Q E NP) . Trên cạnh MP lấy điểm H sao cho MH= MN
a, gọi I là giao điểm của MQ và NH . Chứng minh MI vuông góc với NH
b, kẻ QD vuông góc với MN , Q E MP . Chứng minh DE //HN
cho tam giac MNP vuông tại M( MN>MP). trên cạnh NP lấy điểm E sao cho NE = NM, qua E kẻ đừơng thăng vuông góc với NP cắt MP tại D
a) chứng minh tam giác MND = tam giác END và ND phân giác của MNP
b) trên tia đối của tia MN, lấy điểm F sao cho MF = DP chứng minh tam giác MDF= tam giác EDP
c) minh 3 điểm E , D , F thẳng hàng
d) chứng m ND vuông góc với CF
Cho tam giác MNP vuông tại M, đường phân giác ND(D thuộc MP). Kẻ ME vuông góc với ND(E thuộc ND), ME cắt NP tại K. Chứng minh:
a.Tam giác MNE = Tam giác KNE
b. DK vuông góc NP
c. Kẻ MH vuông góc với NP(H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
cho tam giác MNP vuông tại M có MN nhỏ hơn MP. Vẽ ME vuông góc với MP(E thuộc NP) K là điểm thuộc cạnh MP sao cho MN=MK. Vẽ K vuông góc NP(L thuộc NP). CMR:MEL là tam giác cân
cho tam giác mnp vuông tại m trên np lấy e sao cho ne=nm qua e kẻ kẻ đường thẳng vuông góc với np cắt mp ở i chứng minh tam giác mni=tam giác eni,c/m tam giác ime cân, so sánh im và ip,kẻ đường cao mk của tam giác mnp c/m me là tia p/g cua góc kmp , kẻ ph vuông góc với ni tại h cắt nm kéo dài ở f c/m E,I,F thẳng hàng
cho tam giác MNP vuông tại M, đường phân giác ND( D thuộc MP). Kẻ ME vuông góc với ND (E thuộc ND). ME cắt NP tại K. Chứng minh a) DK vuông góc với NP b) Kẻ MH vuông góc với NP( H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
cho tam giác MNP vuông tại N có góc M bằng 60 độ. tia phân giác của góc NMP cắt NP ở E . kẻ EK vuông góc với NP (K thuộc MP). Kẻ PT vuông góc với tia ME ( T thuộc tia ME) CM:
a) tam giác MNE = tam giác MKE
và ME vuông góc với NK
b)KM=Kp
c)EP>MN
d) ba đường thẳng MN,PT,KE đồng quy tại 1 điểm
(ko vẽ hình cx dc ạ)
Cho tam giác MNP vuông tại M, MH vuông góc NP tại H, trên NP lấy Q sao cho NQ=MN. Đường vuông góc với NP tại Q cắt MP tại R. CM:
a)MR=RQ
b)MQ là tia phân giác của góc HMP
c)Gọi Px là tia đối của tia PN, đường phân giác của góc MPx cắt NR tại K. Tính góc NMK
d)MN+MP<NP+MH