Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC.Trên MA lấy điểm D sao cho MD = MB. So sánh hai tam giác BDA và BMC
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Hai đường cao AK và CI của tam giác ABC cắt nhau tại H (K thuộc BC, I thuộc AB).
a) Chứng minh rằng: góc BAK bằng góc BCI.
b) Gọi M là điểm bất kì trên cung nhỏ BC. Các điểm N, P lần lượt là điểm đối xứng với M qua AB, AC. CMR: Tứ giác AHCP nội tiếp đường tròn.
c) Tìm vị trí điểm M để độ dài đoạn thẳng NP lớn nhất.
Cho tam iacs ABC nhọn nội tiếp đường tròn (O) có AB < AC. M thuộc cung BC nhỏ. đường tròn (O') tiếp xúc (O) tịa M và tiếp xúc AB, AC tại I và K. Gọi E là giao điểm thứ 2 của MK và (O).
1. C/m ME là pg của góc AMC
2.Tia pg Mx của góc BMC cắt IK tại F. C/m: FKCM, FIBM nội tiếp.
3. C/m tam giác BIF đồng dạng tam giác FKC
4. C/m: FM^2=MB.MC
5. C/m: CF là pg góc ACB
cho tam giác đều ABC nội tiếp đường tròn tâm O và M là 1 điểm trên cung nhỏ BC. Trên MA lấy điểm D sao cho MD=MB.
a) tính diện tích 2 tam giác BDA vá BMC
b) CMR : MA = MB + MC
Cho tam giác ABC nội tiếp đường tròn (O;R)(AB=AC và góc BAC=30 độ) Gọi D là một điểm thuộc cung nhỏ AB sao cho sđ cung BD=30 độ, E là điểm thuộc cung nhỏ AC sao cho DE=AB và EA<EC, DE căt AB và AC lần lượt tại M và N. Tính AB và AM theo R
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC(AB<AC, góc AOB>60 độ), D là một điểm thuộc cung nhỏ AB sao cho DA=DB. Đường trung trực của đoạn OA cắt đường tròn (O) tại E và F(F thuộc cung nhỏ AC)
a)CMR sđ cung FC=2 sđ cung DE
b)Đường thẳng qua O song song với DA cắt AC tại J. CMR EJ là phân giác của góc CEF
cho tam giác ABC đều nội tiếp đường tròn tâm O lấy M trên cung nhỏ BC trên dây AM lấy điểm D sao cho MD= MB
a) C/m tam giác MBD đều
b) C/m MB + MC = AM
c) C/m 4 điểm A, O, B, D thuộc 1 đường tròn
d) Xác định vị trí M trên cung BC nhỏ để MB+ MC lớn nhất.
Cho tam giác ABC có \(\widehat{A}>\widehat{B}>\widehat{C}\) nội tiếp trong đường tròn (O), ngoại tiếp đường tròn (I). Cung nhỏ BC có M là điểm chính giữa. N là trung điểm của cạnh BC. Điểm E đối xứng với I qua N. Đường thẳng ME cắt đường tròn (O) tại điểm thứ hai là Q. Lấy điểm K thuộc BQ sao cho QK=QA. Chứng minh:
a) Điểm Q thuộc cung nhỏ AC của đường tròn (O)
b)Tứ giác AIKB nội tiếp và BQ=AQ+CQ
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC.Trên MA lấy điểm D sao cho MD = MB. Hỏi tam giác MBD là tam giác gì?