Tam giác AEM vuông tại I có EI là trung tuyến
=> EI = IA = ½ AM
=> Tam giác EIA cân tại I
=> ^EAI = ^AEI
=> ^MIE = ^EAI + ^AEI = 2.^EAI
C/m tương tự, ta có :
DI = ½ AM, ^MID=2.^DAI
FI = ½ AM, ^MIF=2.^FAI
Tam giác EID cân tại I (vì EI=DI=½AM)
mà ^EID=^MIE+^MID=2.^EAI+2.^DAI=2.(^EAI+^DA...
=> Tam giác EID đều
=> EI = ED = DI (1)
Tam giác DIF cân tại I (vì DI=FI=½AM)
mà ^FID=^MIF-^MID=2.^FAI-2.^DAI=2.(^FAI-^DA...
=> Tam giác IDF đều
=> FI = FD = ID (2)
Từ (1) và (2) suy ra EI=ED=FI=FD (=ID)
=> EIFD là hình thoi
=> KI=KD
Gọi N là trung điểm của AH
Tam giác ABC đều có có H là trực tâm
=> H là trọng tâm
=> AN = HN = HD
Tam giác AMH có AI=MI, AN=HN
=> IN là đường trung bình
=> IN // MH (3)
Tam giác IAN có KI=KD (cmt), DH=NH
=> KH là đường trung bình
=> KH // IN (4)