a﴿ Tam giác ABC có 2 trung tuyến BE và CF cắt nhau tại G => G là trọng tâm tam giác => G thuộc trung tuyến AD Hay A; G; D thẳng hàng b﴿ +﴿ Chứng minh được : góc BAD > DAC ﴾xem phần sau﴿ Trong tam giác ABC có AB < AC nên góc ACB < ABC => góc BAD + ABC > góc DAC + ACB => 180 o ‐ ﴾BAD + ABC﴿ < 180 o ‐ ﴾DAC + ACB﴿ => góc D1 < D2 +﴿ Từ D1 < D2 => BG < CG ﴾xem phần sau﴿ Theo tính chất trung tuyến BG = 1/3 BE ; CG = 2/3 CF => BE < CF c﴿ +﴿ Theo câu b ta có: BE < CF => BE < CF + AD ﴾1﴿ +﴿ Lấy I thuộc tia GD sao cho D là trung điểm của GI => AG = GI = 2GD Dễ có: tam giác BDI = CDG ﴾do BD = CD; góc BDI = CDG; DI = GD﴿ => BI = CG Trong tam giác BGI có: GI < BG + BI Mà GI = AG ; BI = CG => AG < BG + CG => 2/3 AD < 2/3BE + 2/3CF => AD < BE + CF ﴾2﴿ Tương tự, ta có: CF < AD + BE ﴾3﴿ Từ ﴾1﴿﴾2﴿﴾3﴿ => AD; BE; CF thỏa mã các bất đẳng thức tam giác