a, CD=CB=> tam giác BDC cân => gócCDB = gócCBD mà gócACB=gócABC(tam giác ABC cân)=> gócACB=gócCDB
a, CD=CB=> tam giác BDC cân => gócCDB = gócCBD mà gócACB=gócABC(tam giác ABC cân)=> gócACB=gócCDB
Cho tam giác ABC cân tại A(BC<AB).Trên cạnh AB lấy điểm D sao choCD=CB
a) CM góc ACB=góc CDB
b) Trên tia đối của tia CA lấy điểm E sao cho CE=AD. CM BE=BA
Cho tam giác ABC cân tại A(BC<AB).Trên cạnh AB lấy D sao cho CD=CB.CM:
a)góc ACB = góc CDB
b)Trên tia đối tia CA lấy E sao cho CE=AD .CM:BE=BA
Cho tam giác ABC có AB=AC,BC<AB, gọi M là trung điểm của BC.
a,CMR: tam giác ABM=ACM. Từ đó suy ra AM là tia phân giác của góc BAC
b,Trên cạnh AB lấy D sao cho B=CD. Kẻ tia phân giác của góc BCD,tia nay cắt BD tại N.CMR: CN vuông góc với BD
c,Trên tia đối CA lấy E sao cho CE=AD . CMR : góc BCE=ADC
d, CMR: BA=BE
Cho tam giác ABC cân tại A có BC < AB, gọi M là trung điểm của BC.
a) Chứng minh ABM = ACM từ đó suy ra AM là tia phân giác của góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Kẻ tia phân giác của góc BCD, tia này cắt
cạnh BD tại N. Chứng minh CN BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh BCEADC
d) Chứng minh: BA = BE.
Cho Tam giác ABC có AB=AC và BC<AB, gọi M là trung điểm BC.
a) Chứng minh tam giác ABM= tam giác ACM. Từ đó suy ra AM là tia phân giác góc BAC
b) Trên cạnh AB lấy D sao cho CB=CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy E sao cho AD=CE. Chứng minh góc BCE = góc ADC
d) Chứng minh BA=BE
Cho Tam giác ABC có AB=AC và BC<AB, gọi M là trung điểm BC.
a) Chứng minh tam giác ABM= tam giác ACM. Từ đó suy ra AM là tia phân giác góc BAC
b) Trên cạnh AB lấy D sao cho CB=CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy E sao cho AD=CE. Chứng minh góc BCE = góc ADC
d) Chứng minh BA=BE
Bài 2: Cho tam giác ABC trên tia đối của tia CA lấy điểm D sao cho CD = CA, trên tia đối của tia CB lấy điểm E sao cho CE=CB
a) Chứng minh: tam giác ABC= tam giác DEC
b) Chứng minh: AB //DE
c) Trên cạnh AB lấy điểm M , trên cạnh DE lấy điểm N sao cho AM=DN. Chứng minh:tam giác AMC= tam giác DNC
d) Chứng minh: Ba điểm M, C, N thẳng hàng
Cho tam giác ABC có AB bằng AC và BC bé hơn AB, gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM bằng tam giác ACM. Từ đó suy ra AM là tia phân giác của góc BAC
b) Trên cạnh AB lấy điểm D sao cho CB bằng CD. Kẻ tia phân giác của góc BCD, tia này cắt cạnh BD tại N. Chứng minh: CN vuông góc với BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD bằng CE. Chứng minh: góc BCE bằng góc ADC
d) Chứng minh: BA bằng BE
Cho tam giác ABC vuông tại A ( AB > AC )
Gọi M là trung điểm của cạnh BC. Trên tia đối của MA lấy D sao cho MD = MA. Vẽ AH vuông góc BC tại H, trên tia đối của HA lấy E sao cho HE = HA. CMR :
a)AB//CD suy ra CD vuông góc AC
b)ΔCAE có CE=CA
c)CE=DB
d)DE vuông góc AE