Cho tam giác ABC, AB=AC=1, \(\widehat{A}=2\alpha\left(0< \alpha< 45\right)\). Vẽ đường cao AD, BE
a) Các tỉ số lượng giác \(\sin\alpha,\cos\alpha,\sin2\alpha,\cos2\alpha\)được biểu diễn bởi những đường thẳng nào?
b) Chứng minh: tam giác ADC đồng dạng với tam giác BEC, từ đó suy ra các hệ thức:
\(\sin2\alpha=2\sin\alpha\cos\alpha\)\(\cos2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1=\cos^2\alpha-\sin^2\alpha\)Cho tam giác ABC , đường phân giác AD, biết AB = c , AC = b, góc A = \(2\alpha\)( 2 nhân anpha ) ,( 0 < \(\alpha\)(anpha) < 45 ).
Chứng minh : \(AD=\frac{2bc\cos\alpha}{b+c}\)( AD = 2 nhân b nhân c nhân cos anpha tất cả chia b+c).
sin alpha +cos alpha = căn 2 .cho tam giác abc a=90 ah vuông góc bc chứng minh rằng (ab+bc+ac).(ac+ab-bc) >=4(ah^2)
giải giúp mik ạ
GIÚP DÙM MÌNH NHA MÌNH ĐANG CẦN GẤP ^^
1/Chứng minh:
a) \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha=\sin^2\alpha\)
b)\(\cos^2\alpha+\tan^2\alpha\cdot\cos^2\alpha=1\)
2/Cho tam giác ABC có BH là đường cao, biết AB = 40cm;AC=58cm;BC=42cm
a) Chứng minh tam giác ABC vuông
b) Tính tỉ số lượng giác của \(\widehat{A}\)
C)Vẽ \(HE\perp AB;HF\perp BC\). Tính BH ; BE; BF và \(S_{EFCA}\)
Cho tam giác ABX, đường phân giác AD. Biết AB=c, AC=b, \(\widehat{A}=2\alpha;\left(\alpha< 45^o\right)\). Chứng minh \(AD=\frac{2bc.\cos\alpha}{b+c}\)
Cho tam giác ABC vuông tại A có cạnh AB<AC, cho góc C = \(\alpha\)< 45 độ. Vẽ đường trung tuyến AM và đường cao AH của tam giác ABC.
a) sin2\(\alpha\)= cos\(\alpha\)
b) 1+ cos2\(\alpha\)= 2\(\cos^2\alpha\)
c) 1- \(\cos2\alpha\)= 2\(\sin^2\alpha\)
Cho tam giác ABC vuông ở A có AB<AC và trung tuyến AM, góc ACB =\(\alpha\) , góc AMB=\(\beta\) . Chứng minh
\(\left(\sin\alpha+\cos\alpha\right)^2=1+\sin\beta\)
cho tam giác ABC vuông tại A , đương cao AH biết AB =15 , AC =20
a, tính BC và BH
b, Cho alpha là một góc nhọn biết : sin alpha + cos alpha = 1,4
Tính : sin mũ 4 alpha -cos mũ 4 alpha
cho tam giác ABC vuông tại A , đương cao AH biết AB =15 , AC =20
a, tính BC và BH
b, Cho alpha là một góc nhọn biết : sin alpha + cos alpha = 1,4
Tính : sin mũ 4 alpha -cos mũ 4 alpha