tâm đường tròn ngoại tiếp tam giác vuông là gì
Chứng minh các định lý sau:
a, Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền của tam giác đó
b, Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông
Chứng minh các định lí sau:
a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền
b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.
Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng:
(1) Nếu tam giác có ba góc nhọn | (4) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên ngoài tam giác |
(2) Nếu tam giác có góc vuông | (5) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên trong tam giác |
(3) Nếu tam giác có góc tù | (6) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh lớn nhất |
(7) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh nhỏ nhất |
Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng:
(1) Nếu tam giác có ba góc nhọn | (4) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên ngoài tam giác |
(2) Nếu tam giác có góc vuông | (5) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên trong tam giác |
(3) Nếu tam giác có góc tù | (6) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh lớn nhất |
(7) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh nhỏ nhất |
Tâm của đường tròn ngoại tiếp tam giác vuông là
A. Trung điểm cạnh huyền
B. Trung điểm cạnh góc vuông lớn hơn
C. Giao ba đường cao
D. Giao ba đường trung tuyến
cho tam giác ABC nhọn. M là trung điểm AC. kẻ MH vuông góc AB, H thuộc AB. I là tâm đường tròn ngoại tiếp tam giác ABC. N là trung điểm BC, P là trung điểm IN. chứng minh P là tâm đường tròn ngoại tiếp tam giác BCH.
Cho tam giác ABC nội tiếp đường tròn (O), phân giác AD cắt đường tròn (O) tại
E. Gọi I là tâm đường tròn ngoại tiếp tam giác ACD. CMR: CE vuông góc CI
Chứng minh các định lý sau:
a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.
b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.