1.\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
2. \(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
3. \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+2\)
4.\(3x^2-x+48=\left(3x-10\right)\sqrt{x^2+15}\)
5.\(x.\frac{3x}{\sqrt{2x-3}}-\sqrt{2x-3}=2\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
RÚT GỌN A=\(\frac{\sqrt{x}+3}{6+5\sqrt{x}+6}:\left(\frac{8x}{4x\sqrt{x-8x}}-\frac{3\sqrt{x}}{3x-12}-\frac{1}{\sqrt{x}+2}\right)\)
Tính giá trị P=\(2x^3+3x^2-4x+2\)với \(x=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
giải phương trình:
a)\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b)\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
Giải các phương trinh sau
a. \(\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\) b.\(\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
c\(\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}=4}\)
d. \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
e. \(\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
giải phương trình :
1, \(\sqrt{4-x^2}+2\sqrt[3]{x^4-4x^3+4x^2}=\left(x-1\right)^2+1-\left|x\right|\)
2, \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
3, \(x^3-3x+1=\sqrt{8-3x^2}\)
4, \(\left(4x^2+x-1\right)\sqrt{x^2+x+2}=\left(4x^2+3x+5\right)\sqrt{x^2-1}\)
5, \(\sqrt[3]{3-x^3}=2x^3+x-3\)
6, \(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
7, \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
8, \(\frac{4x-1}{\sqrt{4x-3}}+\frac{11-2x}{\sqrt{5-x}}=\frac{15}{2}\)
9, \(x^2-4x+14+\sqrt{x+4}=2\sqrt{1+12x}+\sqrt{1+\sqrt{1+12x}}\)
1) \(\frac{\sqrt{2\left(X^2-16\right)}}{\sqrt{X-3}}+\sqrt{X-3}>\frac{7-X}{\sqrt{X-3}}\)
2) \(\frac{1}{\sqrt{2X^2+3X-5}}\ge\frac{1}{2X-1}\)
3) \(\frac{1-\sqrt{1-4X^2}}{X}< 3\)
4) \(\frac{\sqrt{3X+1}-X}{2X-1}< 1\)
\(\sqrt{10x+1}+\sqrt{3x+5}=\sqrt{9x+4}+\sqrt{2x-2}\)
\(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}-\sqrt{x^2-3x+4}\)
\(\frac{x^2}{\left(1+\sqrt{x+1}\right)^2}>x-4\)
\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)