Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right)\left(2018+1\right)}=4036+2\sqrt{2018^2-1}\)
Mặt khác: \(\left(2\sqrt{2018}\right)^2=4.2018=2.2018+2\sqrt{2018^2}=4036+2\sqrt{2018^2}\)
Vì \(4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}\)
Vậy ......