b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
ĐKXD: tự làm nhé =='
từ đề
\(\Rightarrow A=\frac{2\sqrt{y}-9}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}-\frac{\left(\sqrt{y}+3\right)\left(\sqrt{y}-3\right)}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}+\frac{\left(2\sqrt{y}+1\right)\left(\sqrt{y}-2\right)}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}\)
\(\Rightarrow A=\frac{2\sqrt{y}-9-y+9+2y-3\sqrt{y}-2}{MC}\)
\(\Rightarrow A=\frac{y-\sqrt{y}-2}{MC}=\frac{\left(\sqrt{y}-2\right)\left(\sqrt{y}+1\right)}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}=\frac{\sqrt{y}+1}{\sqrt{y}-3}\)
Đc nhé bác :D
Sensodai: ĐỀ NGHỊ CÁC THÀNH PHẦN TAY NHANH HƠN NÃO K CMT NHÉ =='
\(B=\frac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3-2\sqrt{2}}-\sqrt{2}\right)}{\sqrt{3}}=\sqrt{3-2\sqrt{2}}-\sqrt{2}=\sqrt{2-2\sqrt{2}+1}-\sqrt{2}\)
\(=\sqrt{2}-1-\sqrt{2}=-1\)
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
\(B=x-4\sqrt{x}+\frac{x+16}{\sqrt{x}+3}+10=x-4\sqrt{x}+4+\frac{4\left(\sqrt{x}+3\right)+x-4\sqrt{x}+4}{\sqrt{x}+3}+6\)
\(=\left(\sqrt{x}-2\right)^2+\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+4+6\ge10\)Dấu = xảy ra tại x=4
\(\sqrt{\sqrt[2]{3}\sqrt[2]{5}\frac{\left(\int^2_7^3\right)}{1234}}\)
Tìm x là số nguyên dương
\(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
ta có P=\(\frac{x^2}{x\sqrt{y+3}}+\frac{y^2}{y\sqrt{z+3}}+\frac{z^2}{z\sqrt{x+3}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y+3}+y\sqrt{z+3}+z\sqrt{x+3}}\)
mà \(\left(x\sqrt{y+3}+...\right)^2\le\left(x+y+z\right)\left(xy+yz+zx+3x+3y+3z\right)\le3\left(9+3\right)=36\) ( vì xy+yz+zx<=3)
=>\(x\sqrt{y+3}+...\le6\Rightarrow P\ge\frac{9}{6}=\frac{3}{2}\)
dấu = xảy ra <=> x=y=z=1
ta có P=\(\frac{x^2}{\sqrt{xy+3x}}+...\ge\frac{\left(x+y+z\right)^2}{\sqrt{xy+3x}+...}=\frac{9}{\sqrt{xy+3x}+...}\)
mà \(\left(\sqrt{xy+3x}+...\right)^2\le3\left(xy+...+3x+...\right)\le3\left(3+9\right)=36\Rightarrow\sqrt{xy+3x}+...\le6\)
=>\(P\ge\frac{3}{2}\)