\(\sqrt[ 3 ]{ x-14 \phantom{\tiny{!}}} -\sqrt{ x-1 \phantom{\tiny{!}}} = 3\)
ý bạn là cái này hả :)?
\(\sqrt[ 3 ]{ x-14 \phantom{\tiny{!}}} -\sqrt{ x-1 \phantom{\tiny{!}}} = 3\)
ý bạn là cái này hả :)?
\dfrac{ 1 }{ \sqrt{ x \phantom{\tiny{!}}} -3 } + \dfrac{ 4 }{ \sqrt{ x \phantom{\tiny{!}}} +3 } - \dfrac{ 9- \sqrt{ x \phantom{\tiny{!}}} }{ x-9 }
\left( \dfrac{ 1 }{ \sqrt{ x \phantom{\tiny{!}}} -1 } - \dfrac{ 1 }{ \sqrt{ x \phantom{\tiny{!}}} } \right) \left( \dfrac{ \sqrt{ x \phantom{\tiny{!}}} +1 }{ \sqrt{ x \phantom{\tiny{!}}} -2 } - \dfrac{ \sqrt{ x \phantom{\tiny{!}}} +2 }{ \sqrt{ x \phantom{\tiny{!}}} -1 } \right)
Rút Gọn
Tìm x đễ biêu thức âm
\dfrac{ \sqrt{ y \phantom{\tiny{!}}} -2 }{ \sqrt{ y \phantom{\tiny{!}}} -3 } \times ( \dfrac{ \sqrt{ y \phantom{\tiny{!}}} }{ \sqrt{ y \phantom{\tiny{!}}} -3 } + \dfrac{ 6 \sqrt{ y \phantom{\tiny{!}}} }{ 9-y } - \dfrac{ 3 }{ \sqrt{ y \phantom{\tiny{!}}} +3 } )
\sqrt{ 5+5 \sqrt[ 4 ]{ 5 \phantom{\tiny{!}}} +3 \times \sqrt[ 4 ]{ 25 \phantom{\tiny{!}}} + \sqrt[ 4 ]{ 125 \phantom{\tiny{!}}} }
Phương pháp 2. Biến đổi về phương trình tích
a \(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
b \(2\sqrt[3]{\left(x+3\right)^2}-\sqrt[3]{\left(x-3\right)^2}=\sqrt[3]{x^2-9}\)
c \(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^3+1}\)
d \(14\sqrt{x+35}+6\sqrt{x+1}=84+\sqrt{x^2+36x+35}\)
1. Cho x=\(\sqrt[3]{7+5\sqrt{2}}-\frac{1}{\sqrt[3]{7-5\sqrt{2}}}\)
Chứng minh rằng: \(^{x^3+3x-14=0}\)
2. Cho x=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Tính: A=\(\left(x^3-3x^2+x-19\right)^{2019}\)
tính
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
rút gọn biểu thức
A=\(\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
cho biểu thức P=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{ }x}\)
a/ Rút gọn P
b/Tính P với x = 14 -\(6\sqrt{5}\)
mong mọi người giúp thank you
Bài 1: Tính
a) \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)
b) \(\left(\sqrt{14}-\sqrt{10}\right)\sqrt{6+\sqrt{35}}\)
c) \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)
Bài 2: Cho biểu thức
A = \(\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
a) Rút gọn A
b) Tìm x để A = 2
c) Tìm các số nguyên của x để A ∈ Z