Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
MI NA MAI

SOS cíu vời cô anh ra đề này

We use 8 digits 0, 1, 2, 3, 4, 5, 6, 7 to form all 5-digit natural numbers consisting of distinct digits. Find the sum of all numbers that can be formed.

cô bảo hồi cô giỏi toán nhưng đam mê anh

Chara Madon
18 tháng 10 2023 lúc 19:13

Vãi There are a total of $8\times 7\times 6\times 5\times 4=67,\!200$ ways to form a 5-digit number with distinct digits out of 0, 1, 2, 3, 4, 5, 6, 7. We claim that these can be grouped into $\binom{5}{2}\cdot 2=20$ pairs, where each pair adds up to 7777. The pairs are $(0, 7777), (1, 7776), \ldots, (4, 7773)$ and $(5, 7772), \ldots, (7, 7770)$. Thus, the sum of all the possible numbers is $20\cdot 7777=\boxed{155,540}.$ đó ko biết đúng hay sai nhé

Trần Thu Hà
19 tháng 10 2023 lúc 18:55

Since we are forming 5-digit numbers, the first digit cannot be 0. Therefore, we have 7 choices for the first digit. After choosing the first digit, we have 7 remaining digits to choose from for the second digit, 6 remaining digits for the third digit, 5 remaining digits for the fourth digit, and 4 remaining digits for the fifth digit. So, the total number of 5-digit numbers that can be formed is 7 * 7 * 6 * 5 * 4 = 5,040. To find the sum of these numbers, we can use the formula for the sum of an arithmetic series: S = (n/2)(a + l), where S is the sum, n is the number of terms, a is the first term, and l is the last term. In this case, the first term is 1,2345 (the smallest 5-digit number that can be formed using the given digits) and the last term is 7,6543 (the largest 5-digit number that can be formed using the given digits). Using the formula, we can calculate the sum as follows: S = (5040/2)(12345 + 76543) S = 2520 * 88888 S = 224,217,600 Therefore, the sum of all numbers that can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7 is 224,217,600. ...