37k là số nguyên tố
Mà 37k chia hết cho 37 (nguyên tố)
< = > 37k là hợp số (37k khác 37)
=> 37k = 37 => k = 1
37k là số nguyên tố
Mà 37k chia hết cho 37 (nguyên tố)
< = > 37k là hợp số (37k khác 37)
=> 37k = 37 => k = 1
Số tự nhiên n có dạng n=37k là số nguyên tố khi k=?
1:UCLN(90;225;360)
2:ước chung lớn nhất của hai số lẻ liên tiếp bằng?
3:số tự nhiên n có dạng n=37k là số nguyên tố khi k=.........
4:tập hợp các số tự nhiên gồm các số nguyên dương và số.........
Câu1 :Số nguyên x thỏa mãn 55-(6-x)=15-(-6)
Câu2: Số nguyên âm nhỏ nhất có ba chữ số là ...
Câu3: Số dư khi chia 5^13+5^11-5^10-38 cho 43 là ...
Câu4: Tập hợp các số nguyên x thỏa mãn: |-17-x=7 là...
Câu5: Nếu x là một số lẻ khác 0 thì x^0 bằng ...
Câu6: Số tự nhiên n có dạng n=37k là số nguyên tố khi k bằng ...
Câu 1: Số tự nhiên n có dạng n=37k là số nguyên tố khi k=...
Câu 2:Gía trị nhỏ nhất của biểu thức A=|x+1|+5012015
Câu 3: Tìm số tự nhiên a biết rằng 452/a dư 32 và 321/a dư21
Câu 4: Cho c+5d chia hết cho 7 (với c;d thuộc N)
Số dư của 10c+d+1 khi chia cho 7 là...
Câu 5: Tập hợp các số tự nhiên n thỏa mãn (n^2 +n+4)chia hết cho (n+1)
Số tự nhiên n có dạng n = 29k là số nguyên tố khi k=
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
cho n = 37k (k thuộc N) với giá trị nào của k thì n là ?
a) số nguyên tố
b) hợp số
c) ko là hợp số; ko là số nguyên tố
Tìm k thuộc N để các số sau là số nguyên tố
a, 67k
b, 37k