Chọn C
Phương pháp:
Cho hàm số y = f(x) và M( x 0 ; y 0 )
Bước 1: Gọi ( ∆ ) là tiếp tuyến của đồ thị hàm số đã cho của đồ thị hàm số y = f(x); ( ∆ ) đi qua M( x 0 ; y 0 ) và có hệ số góc k.
Bước 2: ( ∆ ) có dạng
Để ( ∆ ) tiếp xúc với đồ thị y = f(x) thì hệ
Bước 3: Giải hệ bằng phương pháp thế, số nghiệm của hệ là số tiếp tuyến ( ∆ ) tìm được.
Cách giải:
Gọi k là hệ số góc tiếp tuyến ( ∆ ) với đồ thị (C) đi qua A(1;-6)
=>( ∆ ) có dạng: y = k(x-1) - 6
Để ( ∆ ) tiếp xúc với (C) thì
Vậy có 1 pttt đi qua A(1;-6).